Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction.

نویسندگان

  • Shinya Sugimoto
  • Takeo Iwamoto
  • Koji Takada
  • Ken-Ichi Okuda
  • Akiko Tajima
  • Tadayuki Iwase
  • Yoshimitsu Mizunoe
چکیده

Staphylococcus aureus exhibits a strong capacity to attach to abiotic or biotic surfaces and form biofilms, which lead to chronic infections. We have recently shown that Esp, a serine protease secreted by commensal Staphylococcus epidermidis, disassembles preformed biofilms of S. aureus and inhibits its colonization. Esp was expected to degrade protein determinants of the adhesive and cohesive strength of S. aureus biofilms. The aim of this study was to elucidate the substrate specificity and target proteins of Esp and thereby determine the mechanism by which Esp disassembles S. aureus biofilms. We used a mutant Esp protein (Esp(S235A)) with defective proteolytic activity; this protein did not disassemble the biofilm formed by a clinically isolated methicillin-resistant S. aureus (MRSA) strain, thereby indicating that the proteolytic activity of Esp is essential for biofilm disassembly. Esp degraded specific proteins in the biofilm matrix and cell wall fractions, in contrast to proteinase K, which is frequently used for testing biofilm robustness and showed no preference for proteolysis. Proteomic and immunological analyses showed that Esp degrades at least 75 proteins, including 11 biofilm formation- and colonization-associated proteins, such as the extracellular adherence protein, the extracellular matrix protein-binding protein, fibronectin-binding protein A, and protein A. In addition, Esp selectively degraded several human receptor proteins of S. aureus (e.g., fibronectin, fibrinogen, and vitronectin) that are involved in its colonization or infection. These results suggest that Esp inhibits S. aureus colonization and biofilm formation by degrading specific proteins that are crucial for biofilm construction and host-pathogen interaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of the presence and time-variable expression levels of rpoS, relA and mazf genes during biofilm formation in Staphylococcus epidermidis

Background and purpose:Staphylococcus epidermidis is an opportunistic pathogen that is involved in the development of infections associated with the use of implants and medical devices. Biofilm formation is one of the most important virulence factors of this microorganism, which vastly depends on various factors, including different proteins. In the present study, the expression levels of three...

متن کامل

Protein-based biofilm matrices in Staphylococci

Staphylococcus aureus and Staphylococcus epidermidis are the most important etiological agents of biofilm associated-infections on indwelling medical devices. Biofilm infections may also develop independently of indwelling devices, e.g., in native valve endocarditis, bone tissue, and open wounds. After attachment to tissue or indwelling medical devices that have been conditioned with host plasm...

متن کامل

Biofilm Formation and Detection of IcaAB Genes in Clinical Isolates of Methicillin Resistant Staphylococcus aureus

Objective(s) Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial and community infections. Biofilm formation, mediated by a polysaccharide intercellular adhesin (PIA) and encoded by the ica operon, is considered to be an important virulence factor in both S. epidermidis and S. aureus. However, the clinical impact of the ica locus and PIA production is less w...

متن کامل

The Effect of Biosurfactant of Saccharomyces Cerevisiae on Biofilms Produced by Staphylococcus Aureus, Epidermidis and Saprophyticus: A Laboratory Study

Background and Objectives: Biosurfactants are amphiphilic molecules produced by microorganisms that due to  surfactant activity, have several applications in different industries such as cleaning, emulsification, foaming and dispersion. The aim of this study was to investigate the effect of biosurfactant extracted from saccharomycess cerevisiae on biofilm formation of staphylococcus aureus (PTC...

متن کامل

Inhibition of Staphylococcus epidermidis biofilm formation by rabbit polyclonal antibodies against the SesC protein.

Several well-studied proteins with defined roles in Staphylococcus epidermidis biofilm formation are LPXTG motif-containing proteins. Here, we investigate the possible use of the LPXTG motif-containing protein SesC (S. epidermidis surface protein C; accession no. NP_765787) as a target for antibodies to prevent biofilm formation. In vitro and in a in vivo rat model of catheter infection, gene a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 195 8  شماره 

صفحات  -

تاریخ انتشار 2013